Prof. Dr. Peter Hennicke

Germany's Energiewende as a model for change? Problems, disruptions and policies

Speech at the $8^{\text {th }}$ LCS-Meeting
Wuppertal, 6-7 September, 2016

Global driving forces for the Energiewende

Global pathway to zero emissions: Efficiency + Renewables Comparison: IEA Current Policy (CP) vs. Energy (r)evolution (E(R))
 Energy efficiency revolution (= end use + decentralized

*Total primary Energy 519 EJ less 32 EJ non energetic consumption
Source: Hennicke/Grasekamp 2014; based on Jochem/Reize 2013; figures from IEA/OECD/IREES

US: Cost of utility efficiency programs (average: 2.8 cents per kWh) A factor of 50-75\% less than levelized cost of new electricity resource options

The high-end range of coal includes 90% carbon capture and compression. PV stands for photovoltaics. IGCC stand for integrated gesification combined cycle, a technology that converts coal into a synthesis gas and produces steam.
Source: ACEE 2014. Energy efficiency portfolio data from Molina 2014; all other data from Lazard 2013.

Forecasted cost degression of new PV power - in North America, Australia, India and Mena region (in ctskwn)

Current costs of PV and wind in Europe Compared with levelized costs of nuclear (UK) and gas/coal (incl. CCS)

The missing link: "Act locally to change globally"

Opportunities and challenges of the German Energiewende

"Revolutionary Targets" (Chancellor Merkel) Energy Concept, Federal German Government, 28. September 2010

Development Path	2020	2030	2040	2050
Greenhouse Gas Emissions	-40\%	-55\%	-70\%	- 80 bis 95%
Share of renewable energies in relation to the gross final energy consumption	18\%	30\%	45\%	60\%
Electricity generated from Renewable Energy Sources in relation to gross final energy consumption	35\%	50\%	65\%	80\%
Primary Energy Consumption [base year 2008] / annual average gain in energy productivity of 2.1%, based on final energy consumption.	-20\%			-50\%
Electricity Consumption [base year 2008]	-10\%			-25\%
Doubling the Building Renovation Rate from the current figure of less than 1% a year to 2% of the current building stock				
Reduction of the Final Energy Consumption in the Transport Sector [base year 2005]	-10\%			-40\%

[^0]
Green electricity: How much, how quick, how competitive?

 energy mix in 2050

Source: B. Lunz et al. 2016.

The future heat market \rightarrow interlinked with the power market $85 \% \mathrm{CO}_{2}$-Reduction Scenario

■ Heating network

- Oil boiler
- Gas heat pump
- El. heat pump - air source
- Biomass

■ Gas boiler

- El. heat pump - ground source
- Hybrid heat pump

Feed-in law opens the markets for German green electricity Steep learning curves and cost degression for wind and PV power

2015: Wind ca. 42 GW and PV ca. 40 GW; total share REN: 38\%

State of the affairs and $\mathrm{CO}_{2}-$ turnaround

The gap between electricity generation and demand is widening since 2001: Germany is power export champion in Europe

```
Gross electricity generation and production in TWh
```


AG Energiebilanzen 2014

The power price at the electricity exchange has been falling almost continuously since 2008 - on average, power could be bought in 2014 for less than 40 EUR/MWh.

EEX 2014

Economic growth and electricity demand are no longer correlated: While the economy has grown more than 40% since 1990, electricity demand has been decreasing significantly since 2007

Statistisches Bundesamt 2014

In 2015, the rise in household electricity prices will be suspended on average, they should even slightly decline.

Reduced emissions by the energy industry and the mild winter lead to a major decline in greenhouse gas emissions 2014. However, there is still a lot to do in order to reach the $\mathbf{2 0 2 0}$ climate target.

Greenhouse gas emissions by sector in mio. CO_{2}-equivalents, as well as German government targets for 2020 und 2030

Controversial topics of the Energiewende

- Costs: How much, how long, for whom?
- Security of power supply vs. system integration of intermittent power?
- When phasing out coal, how much increase and incentives for REN?
- Focus on power: system transformation of heat and transport sector?
- Supply side biased; how to foster energy (resource) efficiency?
- Decentralized („smart grids") vs. centralized power („Coal")?
- Citizens participation and democratization?
- Lifestyle changes: sustainable consumption and production?
- Political Leadership: Management and responsibilities?

Decrease of Energy Stock Exchange Prices: Avantage for industry due to learning effects/EEG
\rightarrow power intensive industry profits by direct purchase

Trading price of electricity in the spot market and futures trading in Euro/MWh

Quelle: European Energy Exchange 10/2015
Monatsmittelwerte für Produkte Day Base (Stundenkontrakte) und Phelix-Futures (Baseload, Year Future)

Gross electricity generation and residual load in Germany One typical week in April 2022 with 50\% renewables: Forget base load - raise flexibility for security of supply!

Connecting wind (north) and PV (south) by transmission lines one cost-effective way to raise security of power supply

Monthly power production from PV and Wind in Germany (2012 and 2013)

Source: Fraunhofer ISE 2015; Samadi 2016.

Major flexibility options on the transition timeline to 2050 Enough potential to manage fluctuating power (PV, Wind)
flexible operation of conventional power plants
grid expansion (transmission, distribution)
power-to-heat (district heating)
expansion CHP + heat storage
demand side management (industry, households)
electric short term storage (pumped hydro, batteries)
broad use of heat pumps for space heating
hydrogen injection in natural gas network

> synth. fuels for transportation
synth. fuels electr./heat

today

Macroeconomic benefits

Projections of the differential costs of the"Energiewende" All sectors; according to German "Lead Scenario 2011"

Note: Compared with a fossil energy system, assuming a future increase in fossil fuel prices in line with price path A: "Marked".

1) Scenario 2011A for 10-year periods

International comparison of gross investment rates (1970-2006)

Source: C. J äger, PIK, 2009.

Highest priority for energy efficiency makes the transition to sustainable energy quicker and cheaper

The economics of "Negawatts" compared to "Megawatts"
 140 TWh can be saved with a profit - when barriers are removed!

Wuppertal Institut

Example for Germany

Source: Wuppertal Institute 2006

State of the art: Buildings used as power plants "Plus-Energy-Houses" in Freiburg/Germany: supply more energy than they use!

Subsidies for retrofitting the building stock needed!

Wuppertal Institut

- economic multiplier and self-financing effects arepromising!

Effects of promotion

- Increase of retrofitting ratio
- Sustainable reduction of CO_{2}-emissions
- Promotion for SMEs and creation of employment
- Substantial investments in buildings be triggered

Budget funds being recovered by additional revenues of taxes

National Agency for Energy Efficiency + Savings Fund A proposal for a new "policentric governance" of energy efficiency policies

Quelle: Wuppertal Institut 2014

Decentralization: The role of cities, municipalities, cooperatives, citizen financing, ...

Energy Co-operatives in Germany: A Success Story

 Over the last few years the number of energy co-operatives has increased sharply.973 (12/2014)

Ownership of installed renewable power capacities

 in Germany 2010

The split of E.ON: "A matter of survival"
FR 12.03.2015: "Tottering giants. Billions of losses for
Wuppertal Institut RWE and E.ON"!

Two very different energy worlds emerging

Conventional energy world

- System-centric
- Security of supply
- Global/regional perspective
- Large scale, central
- Conventional technologies

New energy world

- Customer-centric
- Sustainability
- Local proximity
- Small scale, distributed
- Clean technologies Institut

Is efficient sufficient?

Increase in GDP has decoupled from life satisfaction GDP/capita in life satisfaction in Germany 1958 until 2009

Source: Denkwerk Zukunft 2010.

A strong plea to combine efficiency and sufficiency policies - to reduce rebound effects and encourage lifestyle changes!

```
"The older I get the more I like regulation"
Eoin Lees, Former Head of Energy Savings Trust/UK
```


System adjustments

- Direct:
- Binding energy saving targets (EU 2011/ 2012)
- Energy efficiency obligations for utilities (EU ESD 2012)
- Reduction of subsidies and internalizing ext. cost of fossil fuels/ nuclear
- Caps, e.g. dynamic standards for fleet consumption of cars (EU)
- Bonus/ Malus regulations e.g. for cars ("feebates")
- More ambitious targets for EU ETS
- Progressive standards (e.g. ICT)
- Ecotax
- Indirect:
- Structural change to less resource intensive sectors (i.e. services)
- Promotion of renewable energy in coordination with energy efficiency
- "ProgRess" (German Program Resource Efficiency)

Behavioral change

- Sustainable consumption, promotion of common goods, education, ...
- Reducing societal disparities (e.g. income, wealth, access), ...

Outlook: Strengthen international cooperation on the energy transition

 First meeting in Tokyo 28./29. September 2016| JAPAN | | GERMANY | | |
| :---: | :---: | :---: | :---: | :---: |
| METI | Financing | | DBU + Mercator + Others | |
| CHAIR: Masakazu Toyoda | Management | | CHAIR: Prof. Peter Hennicke | |
| Organization Office \& Scientific Secretariat:IEEJ | Full Member Experts | | Organization/ Consulting: ECOS Consult
 Scientific Secretariat: Wuppertal Institute | |
| | | | | |
| Jun Arima | Yasumasa Fujii | Claudia Kemfert | | Patrick Graichen |
| Toshiharu lkaga | Koji Nomura | Felix C. Matthes | | Miranda Schreurs |
| Junichi Ogasawara To | Tomihiro Taniguchi | Stefan Thomas | | Eicke Weber |
| Associated Members | | | | |
| Mami
 Ito Hiroshi
 Okamoto | Shinichi Sasayama | Uwe Leprich | Manfred Rauschen | Franzjosef Schafhausen |

Prof. Dr. Peter Hennicke

Thank you for your attention!

New publication:
The Energiewende
Available under: http:// wupperinst.org/ info/ details/ wi/ a/ ad/ 3319/

[^0]: Source: Particular scenario studies and AG Energiebilanzen 2015.

